New Directions in Interventional Pediatric Cardiology

Joshua Kanter, MD
Interventional Cardiology
Children’s National Heart Institute
Children’s National Medical Center
Washington, DC

December 10, 2009

Historical Perspective

- **1844 – Claude Bernard**
 - Inserted a mercury thermometer into the carotid artery of a horse to measure temperature

- **1929 - Werner Forssmann**
 - Inserted a urological catheter into his own forearm and under fluoroscopic guidance guided it to the right atrium
 - Won the Nobel Prize in 1956

- **1953 – Sven-Ivar Seldinger**
 - Developed the percutaneous technique of vascular access

- **1966 – William Rashkind**
 - Developed the equipment and technique for balloon atrial septostomy in the treatment of Transposition of the Great Arteries
Historical Perspective

• 1974 – Grüntzig and Hopff
 – Dilated peripheral vessels with a non-compliant “static” balloon

• 1974 – King and Mills
 – First percutaneous ASD device closure

• 1982 – Jean Kan
 – Described balloon valvuloplasty in the treatment of congenital pulmonary valve stenosis

• 2002 – Philipp Bonhoeffer
 – Designed and implemented a pulmonary valve stent

Advances in Pediatric Cardiac Catheterization

• Diagnostic Era: 1950 – 1970
 – Angiography was the primary diagnostic modality in congenital heart disease.
 – Supplanted by echocardiography in the 1980’s

• Early Interventional Era: 1970 – 1990
 – Balloon valvuloplasty for congenital pulmonary and aortic valve stenosis
 – Balloon angioplasty for coarctation of the aorta
 – Device closure of PDA and ASD
Advances in Pediatric Cardiac Catheterization

- **Current Era: 1990 – present**
 - **Vascular Access**
 - Improvements in equipment
 - 21 ga needles and small flexible wires
 - Small sheaths
 - Novel approaches to access
 - Carotid cut-down for aortic interventions in small neonates
 - Trans-umbilical venous access for balloon atrial septostomy

- **Technological advances**
 - Miniaturization of angioplasty balloons to fit through 3 or 4 fr sheaths
Advances in Pediatric Cardiac Catheterization

• Current Era: 1990 – present
 – Technological advances
 • Miniaturization of stents and stent delivery systems

www.childrensnational.org

Advances in Pediatric Cardiac Catheterization

• Current Era: 1990 – present
 – Technological advances
 • Smaller, softer and more maneuverable catheters
 – Improve vascular accessibility
 – Reduce vascular damage

www.childrensnational.org
Advances in Pediatric Cardiac Catheterization

• Current Era: 1990 - Present
• Advances in Interventional devices
 – Septal closure devices
 • ASD and VSD
 – Vascular closure devices
 • Coils and plugs
 – Percutaneous valve
 • Pulmonary
 • Aortic

www.childrensnational.org

Advances in Pediatric Cardiac Catheterization

• Current Era: 1990 – present
 – New techniques for vascular perforation
 – RF wire
 – Excimer laser

www.childrensnational.org
Advances in Pediatric Cardiac Catheterization

• **Procedural sedation**
 – Pediatric cardiac anesthesiology
 • Knowledge of congenital cardiac anatomy
 • Knowledge of the interaction between anesthetic agents and a given patient's cardiac physiology
 – General anesthesia
 • Improves hemodynamic stability
 • Improves patient compliance
 • Allows the Interventional cardiologist to concentrate on the task at hand

Patient M.A.

• 4 year old female from Kuwait
• History of severe CHF in infancy
• Failure to thrive - 13 kg (4 % ile)
• Normal PA pressures
• Qp:Qs = 2:1
• Normal PVR
Patient M.A.

Percutaneous Technique

- Catheter is advanced retrograde into the LV
- Wire is used to cross VSD and advanced to main PA
- A snare catheter is advanced from IVC to the MPA
- LV wire is snared in the MPA and pulled down to the IVC

www.childrensnational.org
Percutaneous Technique

- The snared wire is brought into the IVC
- Wire is externalized through venous sheath to create an arterio-venous wire loop
- Delivery sheath is advanced from the venous side, across the VSD into the LV
- Wire is removed

Percutaneous Technique

- Device is advanced through the delivery sheath to the LV.
- LV disk is deployed in the body of the LV and brought against the septum
- RV disk is deployed
- Device is released

www.childrensnational.org
Patient M.A.

Patient M.A.
Patient M.A.
Patient M.A.

- Flouro time 19 min
- No residual VSD shunting
- Patient discharged after 23 hour observation
- No complications
Case #2

- Patient J.M.
- Born at 30 wks and 1.4 kg
- On day 6 developed significant tachypnea
- Echocardiogram showed critical aortic stenosis with severely decreased LV function
- Patient was transferred to CNMC for balloon aortic valvuloplasty
Patient J.M.

- Hemodynamics
 - Initial peak systolic gradient = 50mmHg
 - Post valvuloplasty gradient = 26mmHg
- Two additional valvuloplasties were performed
- JM is now 2 years old with moderate AS and mild AI

Case #3

- Patient G.T.
- Prenatal diagnosis at 28 weeks
 - Heterotaxy syndrome
 - Hypoplastic left heart syndrome
 - Mitral atresia, aortic atresia
 - Interrupted IVC with azygous continuation
 - Intact atrial septum with LA decompression through an ascending vertical vein to the innominate vein
Patient G.T.

- **Clinical course**
 - Baby delivered via scheduled C-section and transported to CNMC for emergent cardiac catheterization
 - Due to severe hypoxemia, the patient was electively cannulated for ECMO prior to catheterization
Patient G.T.
Patient G.T.

- **Clinical course**
 - DOL #2 Decannulated from ECMO
 - DOL #6 Norwood procedure with placement of a 5mm RV to PA shunt
 - DOL #22 Transferred to floor
 - 6 months old - Bidirectional Glenn

Summary

- The field of Interventional pediatric cardiology has seen significant recent advances in technology and devices
- We are able to perform more advanced interventions on smaller patients with a higher degree of safety
- We are able to percutaneously close intracardiac defects that perviously required surgery
- We will be able to percutaneously replace heart valves